
Bachelor of Computer Science (Hons)

Page 1 of 4

1. Name of Course Compiler Design
2. Course Code CCPS4573
3. Name(s) of academic staff

4. Rationale for the inclusion of the

course/module in the programme

Major
 The module deals with Compiler Principles and Techniques applied to
general purpose programming language. The goal of this course is to give
students a working knowledge of the foundations, tools, and engineering
approaches used in building a compiler. The emphasis is on the
construction of Compilers to position students to build translators for
simple high level languages.

5. Semester and Year offered 1/4

6. Total Student Learning

Time (SLT)

Face to Face Total Guided and Independent Learning

L = Lecture

T = Tutorial

P = Practical

O= Others

L

28

T P

28

O Independent=84

Total =140

7. Credit Value 3

8. Prerequisite (if any) Computer Programming S1543CCP

9. Objectives:

 To provide students with a solid foundation of the major phases of a compiler.

 To introduce students to the theory behind the various phases, including regular expressions, context free
grammars, and finite state automata.

 To introduce students to the design and implementation of a Compiler

10. Learning outcomes:
After undergoing this module, students will be able to:

 Demonstrate the phases of the compilation process and be able to describe the purpose and implementation
approach of each phase.

 Proficiently explain the aspects of theoretical computer science including Languages, Grammars, and
Machines.

 Apply prior programming knowledge with a non-trivial programming project to construct a compiler.

11. Transferable Skills:

1. Working knowledge of the foundations, tools, and engineering approaches used in building a compiler.

 Proficiently communicate about compiler construction.

 Practical experience in building a compiler

Bachelor of Computer Science (Hons)

Page 2 of 4

1. Teaching-learning and assessment strategy

A variety of teaching and learning strategies are used throughout the course, including:

 Classroom lessons. Lectures and Power Point presentations

 Laboratory sessions: Practice exercises

 brainstorming;

 student-Lecturer discussion

 collaborative and co-operative learning;

 Independent study.
Assessment strategies include the following:

 Ongoing quizzes

 Midterm tests

 Performance Assessment (project, Assigned exercises)

 Lecturer Observation

2. Synopsis:
The module deals with Compiler Principles and Techniques applied to general purpose programming language. Subjects
include scanning and regular expressions, context-free grammars and parsing, syntax-directed translation, abstract
syntax trees, scoping, symbol tables, code-generation, and code optimization., students will design lexical and syntax
analyzer phases of complier.

3. Mode of Delivery:

 Classroom lessons. Lectures and Power Point presentations

 Laboratory sessions: Practice exercises

4. Assessment Methods and Types:

The assessment for this course will be based on the following:

Coursework 50%

 Quizzes and Assignments 15%

 Group Project 15%

 Mid-Semester Exam 20%
.50% .Final Examination

 100%

5. Mapping of the course/module to the Programme Aims

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

4 2 2 0 2 1 0 2 0 4 3 0

6. Mapping of the course/module to the Programme Learning Outcomes

LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10 LO11 LO12

4 3 2 3 1 0 1 2 2 0 0 0

7. Content outline of the course/module and the SLT per topic

 Details

SLT

L

P

In
d

ep
.

To
ta

l

Bachelor of Computer Science (Hons)

Page 3 of 4

To
p

ic
 1

Introduction

 Overview of Compilers,

 Mathematical Preliminaries,

 Analysis of the source program

 The phases of a compiler

 Cousins of the compiler

 The grouping of phases

 Compiler-construction tools

 High level Programming Languages,

 Implementation of Programming Languages,

 Interpreters, Real and Abstract Machines

4 4 12 20
To

p
ic

 2

Simple One-pass Compiler

 Overview

 Syntax-directed translation

 Parsing

 A translator for simple expressions

 Lexical analysis

 Incorporating a symbol table

2 2 6 10

To
p

ic
 3

Lexical analysis

 The role of the lexical analyzer

 Input buffering

 Specification of tokens

 Recognition of tokens

 Finite automata

 Design of a lexical analyzer generator

 Optimization of DFA-based pattern matchers

4 4 12 20

To
p

ic
 4

Parsing Techniques

 The role of the parser

 Context-free grammars

 Writing a grammar

 Top-down parsing

 Bottom-up parsing

 Operator-precedence parsing

 LR parsers

 ambiguous grammars

 Parser generators

4 4 12 20

To
p

ic
 5

Syntax-Directed Translation

 Syntax-directed definitions

 Construction of syntax trees

 Bottom-up evaluation of S-attributed definitions

 L-attributed definitions

 Top down translation

 Bottom-up evaluation of inherited attributes

 Recursive evaluators

 compiler-construction time

4 4 12 20

Bachelor of Computer Science (Hons)

Page 4 of 4

To
p

ic
 6

Type Checking

 Type Systems

 Specification of a simple type checker

 Equivalence of type expressions

 Type conversions

 Polymorphic functions

2 2 6 10

To
p

ic
 7

Run-Time Environments

 Source language issues

 Storage organization and Storage-allocation strategies

 Parameter passing

 Symbol tables

 Dynamic storage allocation techniques

2 2 6 10

To
p

ic
 8

Intermediate Code Generation

 Intermediate languages

 Declarations

 Assignment statements

 Boolean expressions

 Case statements

 Procedure Calls

2 2 6 10

To
p

ic
 9

Code Generation And Optimization

 Problems in code generation

 The target machine

 Simple Code generator

 Error detection and recovery

 Run-time storage management

 Sources of Optimization

 DAG representation

 Global Data flow Analysis

4 4 12 20

 Total 28 28 84 140

L
a
b

o
ra

to
ry

Laboratory Details

Exercises based on topics covered in each lecture. practical work must include the following:

 Lexical Analyzer (Simulation)

 Writing simple Parser programs

 Top-down parsing

 Bottom-up parsing

 Operator-precedence parsing

 Developing applications with LEX and YACC

 Designing simple imperative languages

 Simple Intermediate Code Generation: Declarations, Boolean expressions , Case statements and Procedure Calls

 Storage organization and Storage-allocation, Parameter passing ,Symbol tables ,Dynamic storage allocation

19. Main references supporting the course:

 Alexander Meduna, Elements of Compiler Design, 1st edition, Auerbach Publications, 2007

Additional references supporting the course:
2. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman , Compilers: Principles, Techniques, and Tools, 2nd Edition, Addison

Wesley, 2006
3. Parsons, T. W.: Introduction to Compiler Construction. Freeman, New York, 1992.

20. Other additional information

All materials will be available to the students online.

