Bachelor of Computer Science (Hons)

1. Name of Course . o
Compiler Design
2. Course Code CCPS4573
3. Name(s) of academic staff
4, Rationale for the inclusion of the Major
. The module deals with Compiler Principles and Techniques applied to
course/module in the programme
general purpose programming language. The goal of this course is to give
students a working knowledge of the foundations, tools, and engineering
approaches used in building a compiler. The emphasis is on the
construction of Compilers to position students to build translators for
simple high level languages.
5. Semester and Year offered 1/4
6. Total Student Learning | Face to Face Total Guided and Independent Learning
Time (SLT)
L = Lecture L T P (o] Independent=84
T = Tutorial 28 28 Total =140
P = Practical
O= Others
7. Credit Value 3
8. Prerequisite (if any) CCPS1543 Computer Programming
9. Objectives:
e To provide students with a solid foundation of the major phases of a compiler.
e To introduce students to the theory behind the various phases, including regular expressions, context free
grammars, and finite state automata.
e Tointroduce students to the design and implementation of a Compiler
10. Learning outcomes:
After undergoing this module, students will be able to:
e Demonstrate the phases of the compilation process and be able to describe the purpose and implementation
approach of each phase.
e Proficiently explain the aspects of theoretical computer science including Languages, Grammars, and
Machines.
o Apply prior programming knowledge with a non-trivial programming project to construct a compiler.
11. Transferable Skills:
1. Working knowledge of the foundations, tools, and engineering approaches used in building a compiler.
e Proficiently communicate about compiler construction.
e Practical experience in building a compiler

Page 1 of 4

Bachelor of Computer Science (Hons)

1. Teaching-learning and assessment strategy

A variety of teaching and learning strategies are used throughout the course, including:
e Classroom lessons. Lectures and Power Point presentations
. Laboratory sessions: Practice exercises
e brainstorming;
e student-Lecturer discussion
e collaborative and co-operative learning;
e Independent study.
Assessment strategies include the following:
e Ongoing quizzes
e Midterm tests
e Performance Assessment (project, Assigned exercises)
e Lecturer Observation

2. Synopsis:

The module deals with Compiler Principles and Techniques applied to general purpose programming language. Subjects
include scanning and regular expressions, context-free grammars and parsing, syntax-directed translation, abstract
syntax trees, scoping, symbol tables, code-generation, and code optimization., students will design lexical and syntax
analyzer phases of complier.

3. Mode of Delivery:

° Classroom lessons. Lectures and Power Point presentations
. Laboratory sessions: Practice exercises

4, Assessment Methods and Types:

The assessment for this course will be based on the following:

Coursework 50%
e Quizzes and Assignments 15%
e Group Project 15%
e Mid-Semester Exam 20%
Final Examination 50%
100%
5. Mapping of the course/module to the Programme Aims
Al A2 A3 A4 A5 A6 A7 A8 A9 A10 All Al12
4 2 2 0 2 1 0 2 0 4 3 0
6. Mapping of the course/module to the Programme Learning Outcomes

LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10 LO11 LO12

4 3 2 3 1 0 1 2 2 0 0 0
7. Content outline of the course/module and the SLT per topic
SLT
Details s | &
LR R B
I [

Page 2 of 4

Bachelor of Computer Science (Hons)

Introduction
e QOverview of Compilers,
e Mathematical Preliminaries,
e Analysis of the source program
- e The phases of a compiler
'E e Cousins of the compiler 4 4 12 20
Q e The grouping of phases
e Compiler-construction tools
e High level Programming Languages,
e Implementation of Programming Languages,
. Interpreters, Real and Abstract Machines
Simple One-pass Compiler
e Overview
~ e Syntax-directed translation
'E e Parsing 2 2 6 10
R e Atranslator for simple expressions
e Lexical analysis
e Incorporating a symbol table
Lexical analysis
e The role of the lexical analyzer
e Input buffering
% e Specification of tokens 4 4 12 20
° e Recognition of tokens
e Finite automata
e Design of a lexical analyzer generator
e Optimization of DFA-based pattern matchers
Parsing Techniques
e The role of the parser
e Context-free grammars
e Writing a grammar
% e Top-down parsing 4 4 12 20
° e Bottom-up parsing
e Operator-precedence parsing
e LR parsers
® ambiguous grammars
e Parser generators
Syntax-Directed Translation
e Syntax-directed definitions
e Construction of syntax trees
n e Bottom-up evaluation of S-attributed definitions
O
'g_ e L-attributed definitions 4 4 12 20
= e Top down translation
e Bottom-up evaluation of inherited attributes
e Recursive evaluators
e compiler-construction time

Page 3 of 4

Bachelor of Computer Science (Hons)

Type Checking
e Type Systems
'§_ e Specification of a simple type checker P P 6 10
° e Equivalence of type expressions
e Type conversions
e Polymorphic functions
Run-Time Environments
® Source language issues
% e Storage organization and Storage-allocation strategies 2 2 6 10
° ® Parameter passing
e Symbol tables
e Dynamic storage allocation techniques
Intermediate Code Generation
e Intermediate languages
) e Declarations
'§ ® Assignment statements 2 2 6 10
= ® Boolean expressions
e (Case statements
® Procedure Calls
Code Generation And Optimization
® Problems in code generation
e The target machine
2 e Simple Code generator
.g- e Error detection and recovery 4 4 12 20
= e Run-time storage management
e Sources of Optimization
e DAG representation
e Global Data flow Analysis
Total | 28 | 28 | 84 | 140
Laboratory Details
Exercises based on topics covered in each lecture. practical work must include the following:
e Lexical Analyzer (Simulation)
. . Writing simple Parser programs
§ e Top-down parsing
s e Bottom-up parsing
% e Operator-precedence parsing
- e Developing applications with LEX and YACC
e Designing simple imperative languages
e Simple Intermediate Code Generation: Declarations, Boolean expressions , Case statements and Procedure Calls
e Storage organization and Storage-allocation, Parameter passing ,Symbol tables ,Dynamic storage allocation
19. | main references supporting the course:
e Alexander Meduna, Elements of Compiler Design, 1st edition, Auerbach Publications, 2007
Additional references supporting the course:
2. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman , Compilers: Principles, Techniques, and Tools, 2nd Edition, Addison
Wesley, 2006
3. Parsons, T. W.: Introduction to Compiler Construction. Freeman, New York, 1992.
20. | Other additional information
All materials will be available to the students online.

Page 4 of 4

